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Gravity modulation of an unbounded fluid layer with surface tension variations along
its free surface is investigated. The stability of such systems is often characterized in
terms of the wavenumber, α and the Marangoni number, Ma. In (α,Ma) parameter
space, modulation has a destabilizing effect on the unmodulated neutral stability curve
for large Prandtl number, Pr, and small modulation frequency, Ω, while a stabilizing
effect is observed for small Pr and large Ω. As Ω →∞ the modulated neutral stability
curves approach the unmodulated neutral stability curve. At certain values of Pr
and Ω, multiple minima are observed and the neutral stability curves become highly
distorted. Closed regions of subharmonic instability are also observed. In (1/Ω, g1Ra)-
space, where g1 is the relative modulation amplitude, and Ra is the Rayleigh number,
alternating regions of synchronous and subharmonic instability separated by thin
stable regions are observed. However, fundamental differences between the stability
boundaries occur when comparing the modulated Marangoni–Bénard and Rayleigh–
Bénard problems. Modulation amplitudes at which instability tongues occur are
strongly influenced by Pr, while the fundamental instability region is weakly affected
by Pr. For large modulation frequency and small amplitude, empirical relations are
derived to determine modulation effects. A one-term Galerkin approximation was also
used to reduce the modulated Marangoni–Bénard problem to a Mathieu equation,
allowing qualitative stability behaviour to be deduced from existing tables or charts,
such as Strutt diagrams. In addition, this reduces the parameter dependence of the
problem from seven transport parameters to three Mathieu parameters, analogous to
parameter reductions of previous modulated Rayleigh–Bénard studies. Simple stability
criteria, valid for small parameter values (amplitude and damping coefficients), were
obtained from the one-term equations using classical method of averaging results.

1. Introduction
Under certain conditions, such as thin liquid films or in a low-gravity environment,

surface tension variations along a free surface may induce convection, referred to as
thermocapillary convection. Thermocapillary phenomena are important to terrestrial
applications such as coatings and drying processes as well as potential microgravity
technologies such as crystal growing and materials processing applications. Onset of
thermocapillary convection in the form of an extended Marangoni–Bénard problem
remains an active topic of study, in part due to its relative simplicity in terms of
a motionless basic state and constant (or time-periodic) coefficients. The popularity
of such models also comes from the understanding and physical insight they have

† Present address: ICASE, NASA Langley Research Center, Hampton VA 23681-2199, USA.
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provided for a broad range of physical phenomena (Pimputkar & Ostrach 1981;
Ostrach 1982; Davis 1987; Legros et al. 1990; Koschmieder 1993). Bénard-type
models have also been used to examine modulation effects such as temperature or
gravity modulation; however Marangoni–Bénard problems have received far less
attention than Rayleigh–Bénard problems.

Gershuni & Zhukhovitskii (1963) and Venezian (1969) considered the effect of
temperature modulation of the Rayleigh–Bénard problems where buoyancy drives
convection. Two papers, Gershuni, Zhukhovitskii & Iurkov (1970) and Gresho &
Sani (1970) address gravity modulation of the Rayleigh–Bénard problem. Gershuni,
Zhukhovitskii & Iurkov (1970) considered the linear stability of an unbounded fluid
layer and fluid within a vertical circular cylinder with modulation of both the
mean vertical temperature gradient and the vertical component of gravity, while
Gresho & Sani (1970) studied both linear and nonlinear behaviour of the gravity-
modulated unbounded layer. In both studies, a one-term Galerkin expansion reduced
the equations to a single second-order ordinary differential equation. Applying a di-
rect analogy to the viscously damped pendulum with an oscillating vertical support,
Gresho & Sani (1970) recast the problem in terms of the Mathieu equation, reducing
the number of parameters affecting the system behaviour from six (fluid transport)
to three (Mathieu). These earlier studies were often associated with other funda-
mental problems such as Taylor instability, pendulum analogies, and fluid control
techniques.

Renewed interest in modulated Bénard-type problems over the past decade has
been motivated by study of fluid and materials processing systems in low-gravity
environments, and the potential impact of residual accelerations and vibrational
mechanisms on these systems. An enormous amount of transient acceleration mea-
surements has been recorded from flights or missions on board various Earth orbiting
platforms. Results from these data have been summarized to characterize the residual
acceleration environments, while actual flight data are accessible for further analysis
or transient simulation activities (cf. DeLombard 1999; McPherson & Hrovat 2000).
The gravity level on board orbital laboratories is not constant, and the response
of fluid or materials processing systems continues to be an active topic of research
(Monti, Langbein & Favier 1987; Alexander 1990; Nelson 1994). In general, the
time-dependent part of the residual acceleration, g-jitter, varies randomly in magni-
tude and direction. With the exception of attitude adjustments, these disturbances
are usually transmitted as structural vibrations, eventually to the support structure
or container walls of the fluid system in question, such as fuel tanks, or laboratory
experiments. Therefore, the actual excitation experienced by the fluid may sometimes
be approximated by a harmonic forcing with the frequency of the resonant structural
mode.† More precisely, for small disturbances (e.g. displacements), broad-band ran-
dom excitation near a highly resonant mode gives a narrow-band response centred
on the natural frequency (Newland 1993). Clearly, the random nature, combination
tones (and other nonlinear effects), and orientation cannot be ignored. However, a
Floquet analysis of the approximated system, linearized with periodic excitation, is
a good first step. In addition to their theoretical merits, these analyses often provide
practical insight for appropriate physical conditions.

Several recent studies concerned with g-jitter in space-related applications, have
applied Floquet theory to characterize stability behaviour in the context of a modu-
lated Bénard-type problem. Murray, Coriell & McFadden (1991) and Wheeler et al.

† In the case of broader band fluctuations, multiple resonant modes can certainly occur.
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(1991) treated the gravity-modulated onset of convection problem with respect to
directional solidification. Certain combinations of modulation amplitudes and fre-
quencies were found to stabilize the unmodulated fluid layer that would normally
be unstable, or conversely destabilized a fluid layer whose unmodulated state is
stable. Gravity-modulated double-diffusive convection was examined by Saunders
et al. (1992). Terrones & Chen (1993) performed a comprehensive analysis of the
effects of gravity modulation in both double-diffusive, and binary fluid systems where
Soret effects occur. More recently, Gershuni et al. (1997) have applied the method
of averaging to study modulation in binary fluid systems in the presence of high
modulation frequencies. For all modulated studies cited thus far, buoyancy is the
stratifying agency which incites instabilities.

Recently, the effects of modulation have been examined in systems where flow is
driven by surface tension variation along a free surface (Or & Kelly 1995; Kelly
& Or 1998; Or 1997). Although not specifically concerned with gravity modulation,
these papers appear to be among the first to consider modulation effects in such
systems. They have investigated the effect of shear and temperature modulation
on the Marangoni–Bénard problem and noted interesting behaviour associated with
surface deformation. For example, shear modulation due to an oscillating lower (rigid)
boundary, destabilized the long-wavelength mode but stabilized the finite-wavelength
modes. They found shear modulation could stabilize both finite- and long-wavelength
modes while thermal modulation is effective in stabilizing the finite mode (Kelly &
Or 1998). A preliminary thermocapillary study of gravity modulation for single- and
double-diffusive systems with flat non-deformable free surface has also been reported
by Skarda (1998a).

In this paper, parametric excitation of an unbounded fluid layer with surface
tension variation along the free surface is considered. The work is subject to the same
restrictions as those of studies cited above, and represents a similar step towards
characterizing vibrational g-jitter effects in reduced-gravity environments. This paper
focuses on the Marangoni–Bénard problem, and how a fluid layer responds to gravity
modulation or time-periodic accelerations, which are imposed in the direction of the
basic temperature gradient. The problem is formulated in § 2 where Floquet theory is
applied to examine the stability of the modulated system using a spectral collocation
approach to discretize the relevant systems of equations, and results are presented
in § 3. A brief investigation of and comparison with the modulated Rayleigh–Bénard
problem is also provided in § 3.3. In § 4 the mechanical analogy used by Gresho &
Sani (1970) for the Rayleigh–Bénard problem is extended to the Marangoni–Bénard
problem. Finally simple equations based on method of averaging in connection with
the one-term Galerkin formulation, are developed in § 4.3 that predict the modulation
behaviour of the fundamental instability boundary.

2. Formulation of equations and boundary conditions
An unbounded fluid layer with dimension 0 6 x∗3 6 d is considered. The governing

equations, continuity, momentum and energy equations, for incompressible flow are

∂U∗i
∂x∗i

= 0, (2.1)

∂U∗i
∂t∗

+U∗j
∂U∗i
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−1

ρo
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∂T ∗

∂t∗
+U∗j

∂T ∗

∂x∗j
= D

∂2T ∗

∂x∗j ∂x∗j
, (2.3)

where δij is Kronecker’s delta, i = 1, 2, 3 and * denotes dimensional quantities. The
dependent variables U∗i and T ∗ are the velocity and temperature respectively. The
time-dependent body force term is periodic, of the form g∗(t) = g∗

o
+ g∗

1
cos (Ω∗t∗).

Density, ρ, is computed using the Boussinesq approximation, ρ = ρo{1− β(T ∗ − T̄ ∗0 )},
where β is the thermal expansion coefficient. The reference temperature chosen for the
buoyancy term is that of the lower surface, T̄ ∗0 . The kinematic viscosity, ν, and thermal
diffusivity, D, are assumed constant. Impenetrable and no-slip velocity conditions are
applied, and a constant temperature is imposed at the lower surface, x∗3 = 0.

At x∗3 = 0 (bottom)

U∗i = 0, T ∗(0) = T̄ ∗0 , (for i = 1, 2, 3), (2.4a, b)

The upper surface, at x∗3 = d, is flat and non-deformable leading to

U∗3 = 0, (2.5a)

while tangential stress balances are given by

µ

(
∂U∗3
∂x∗j

+
∂ U∗j
∂ x∗3

)
= −γ ∂T

∗

∂x∗j
. (2.5b, c)

The heat flux condition is given by

−ρcpD∂T ∗

∂x∗3
= Q∗. (2.5d )

In (2.5) j = 1, 2; and µ and cp are the dynamic viscosity and specific heat, respectively,
with constant values. Surface tension, σ, is approximated as a linearized function of
T ∗, σ = σ0 − γ(T ∗ − T̄ ∗1 ) where the surface tension variation with temperature, γ, is
defined as γ = −(∂σ/∂T ∗)c∗ ,P ∗ (Adamson 1982). Q∗ is the heat flux to the environment
at the free surface.

The velocity and temperature basic state profiles are Ū∗ = 0 and T̄ ∗(x∗3) = T̄ ∗(0)−
∆T̄ ∗x3/d where the difference quantities of the form ∆y∗ are defined as ∆y∗ =
y∗(0) − y∗(d). Following Gresho & Sani (1970), Gershuni et al. (1970) and Joseph
(1976), the equations are linearized and then non-dimensionalized. Reference values
used to non-dimensionalize the resulting disturbance equations are d, D/d, d2/D, and
∆T̄ ∗, for length, velocity, time, and temperature, respectively. By assuming solutions
of the form

(u(xi, t), θ(xi, t)) = (w(x3, t), φ(x3, t)) exp (i(α1x1 + α2x2))

for the perturbation variables, velocity, u, and temperature, θ, the following disturb-
ance equations of x3-momentum and energy are obtained.

(D2 − α2)ẇ = −Pr α2g(t)Ra φ+ Pr (D2 − α2)2w (2.6)

φ̇ = (D2 − α2)φ+ w (2.7)

where g(t) = go + g1 cosΩt, go = g∗o/gc, g1 = g∗1/gc, gc = 9.80665 m s−2†, α2 = α2
1 + α2

2,
Ω = Ω∗D/d2, D denotes ∂/∂x3, and the overdot represents the time derivative, d/dt.

Rigid and conductive conditions are imposed on the disturbance velocity and

† Standard value of acceleration, see for example Mohr & Taylor (2000).
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temperature at x3 = 0:

w = 0, Dw = 0, φ = 0 (2.8a–c)

At x3 = 1, a flat non-deforming free surface yields

w = 0, (2.9a)

while the tangential stress balance is given by

D2w = −α2Maφ. (2.9b)

The disturbance flux condition at the free surface is

Dφ+ Bi φ = 0. (2.9c)

The resulting dimensionless parameters from the above equations are: the Prandtl
number, Pr = ν/D, thermal Rayleigh number, Ra = gcβ∆T̄ ∗d3/Dν, thermal Maran-
goni number, Ma = γ∆T̄ ∗d/Dµ, and surface Biot number, Bi = h1d/κ.†

The disturbance equations are reduced to a set of 2N − 6 ordinary differential
equations, ODEs, using a spectral (Chebyshev) collocation scheme where N is the
number of collocation points. A Floquet analysis is applied to examine the stability
of the system of ODEs (Meirovitch 1988; Joseph 1976). The monodromy matrix is
computed by integrating the set of ODEs 2N − 6 times over the period τ. Floquet
multipliers, ρj , which are the eigenvalues of the monodromy matrix are then computed,
and the characteristic exponents, λj , which determine the stability of the system are
related to the floquet multipliers as λj = (1/T ) ln (ρj). The characteristic exponent
with the largest Re(λ), determines the stability of the system. If Re(λ) is positive,
disturbances grow, if Re(λ) is negative, disturbances decay. The imaginary part of λ
is multivalued and characterizes the system response. The response is synchronous
when Im(λ) = nΩ, and subharmonic when Im(λ) = (n+ 1

2
)Ω, where n is an integer

value. When the two frequencies are incommensurate, |δ| 6= n for Im(λ) = δ 1
2
Ω, the

response is quasi-periodic (Gresho & Sani 1970; Joseph 1976; Saunders et al. 1992;
Terrones & Chen 1993).

Results from the Floquet-collocation scheme were verified in part by comparison
to the exact solution of the unmodulated Marangoni–Bénard problem,

Ma =
8α2 cosh α(α− sinh α cosh α)

(α3 cosh α− sinh3 α)
, (2.10)

obtained by Pearson (1958). The unmodulated problem is autonomous, therefore
the system of equations can be viewed as periodic over an arbitrary period, τ, in
the context of a Floquet analysis. Similar validation strategies have been applied in
the examination of modulated Rayleigh–Bénard type (double-diffusive/soret) systems
(Saunders et al. 1992; Terrones & Chen 1993). For this study, ten collocation points
were sufficient to give five- and six-digit agreement with the exact solution, while
twelve collocation points provided six to seven digit agreement. Spatial resolution
(number of collocation points) was varied to assess convergence behaviour at finite
modulation amplitudes. Results from ten collocation points provided four- to five-
digit agreement with those of 20 collocation points, while twelve collocation points
gave five-digit agreement or better over the parameter ranges investigated. Results
presented in § 3 were obtained primarily using N = 10, and in the other cases using

† The quantity, h1d/κ, is also referred to as the surface Nusselt number in the literature. h1 is
the surface heat transfer coefficient defined in Pearson (1958) and Skarda, Jacqmin & McCaughan
(1998) (among several references). κ is the thermal conductivity of the fluid layer.



248 J. R. L. Skarda

300

200

100

0

–100

Ma

(a)

hump 2 hump 3

X=7

300

200

100

0

–100

Ma

(e)

hump 1 hump 2

X=18

(b)

hump 2 hump 3

X=10

(c)

hump 1
hump 2

X=14.5

(d )

hump 1 hump 2

X=17

(h)

X=100

(g)

X= 40

hump 1

( f )

X=26

hump 1
hump 2

0 2 4 6
α

0 2 4 6
α

0 2 4 6
α

0 2 4 6
α

Figure 1. Neutral stability curves for Pr = 1, Bi = 0, g0 = 0, g1Ra = 5000: —–, modulated neutral
stability; - - -, unmodulated neutral stability.

N = 12. The problem was also formulated using a traditional Galerkin scheme,
primarily to carry out the one-term computations in § 4. However, calculations using
five to six trial functions were performed to further check our spectral computations.

3. Results
3.1. Neutral stability boundaries in (α,Ma)-space

The effect of modulation frequency on neutral stability is first examined in (α,Ma)-
space, which has traditionally been used to study stability behaviour for the unmodu-
lated Marangoni–Bénard problem. The set of neutral stability curves in figures 1(a)
to 1(h) corresponds to Pr and g1Ra values of 1 and 5000, respectively, and the
classical Marangoni–Bénard condition of an insulated free surface, Bi→ 0, is applied
at the upper boundary. Below each curve, the system is stable and ‘small’ disturbances
decay, while above the curve, the system is unstable and the disturbances will grow in
time. The unmodulated neutral stability curve is also shown in each figure for direct
comparison with modulated neutral stability boundaries.

Figure 1(a) reveals the existence of two small local minima (denoted as humps)
near the bottom of the neutral stability curve for Ω = 7. Mac is associated with hump
3 in figure 1(a) and shifts to hump 2 for Ω = 10 in figure 1(b). This suggests that
a double minimum exists along the synchronous curve for some Ω between 7 and
10. In figure 1(c) where Ω = 14.5, hump 2 forms a narrow finger that extends below
the unmodulated Mac of 79.6, thus having a destabilizing effect on the unmodulated
neutral stability curve. Another local minimum, hump 1, is found near α = 1 in
figure 1(c). Examination of figure 1(d–f) indicates hump 1 becomes more prominent
as hump 2 recedes with increasing Ω, suggesting the presence of another double
minimum. Hump 2 eventually disappears with increasing modulation frequency.
Between Ω of 17 and 18, a subharmonic closed neutral stability branch forms. This
region of instability grows with increasing modulation frequency until reaching an
Ω of approximately 35. The subharmonic branch then begins to shrink and shifts to
higher wavenumbers and lower Marangoni numbers, and eventually disappears as Ω
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Figure 2. Mac versus Ω for the synchronous branch at different values of Pr. g0 = 0, g1Ra = 5000.
Inset shows critical curve for Pr = 0.01.

increases to a value of 100 where only the synchronous branch is evident. For Ω > 100
the subharmonic loop shifts out of the range of Ma values explored while modulation
is observed to have a stabilizing effect on the synchronous branch. The stabilization
effect however diminishes with further increase of the modulation frequency.

The behaviour of critical Marangoni numbers, Mac, and critical wavenumbers, αc,
with respect to modulation frequency are shown in figures 2 and 3 for Pr values
of 0.01, 7.1, 10 and 100. In view of the complex topology of the neutral stability
curves, the critical values for Pr = 1 are presented separately in figure 4. This level of
complexity, specifically multiple minima and subharmonic modes, was not observed
in the neutral stability plots at the other Pr values we investigated. The absence of
subharmonic behaviour for Pr values away from 1 may be due in part to larger
damping with respect to Pr = 1. As described in § 3.2, larger modulation amplitudes
are then required to achieve alternating subharmonic and synchronous instability
behaviour. On the other hand, the Pr = 1 results shown in figures 1 and 4 indicate
that the modulation amplitude, g1Ra = 5000, is sufficient to reach a subharmonic
resonant mode which is also consistent with results in § 3.2.

Figure 2 shows that gravity modulation for sufficiently small Ω is destabilizing
for all Pr values investigated. As Ω increases, gravity modulation has a stabilizing
effect on Mac which reaches a maximum at some finite values of Ω. The stabilizing
effect then decreases with a further increase in Ω, and approaches the unmodulated
critical value of Macp = 79.607 as Ω →∞. The unmodulated critical wavenumber is
αcp = 1.993. The subscript cp denotes the critical value of the unmodulated problem
originally formulated by Pearson (1958). Values of Mac, Ω, and αc where maximum
stabilization occurs are given in table 1.

Critical and extremum values of Ma and α for Pr = 1 are shown in figure 4.
Critical Marangoni numbers and corresponding wavenumbers for both synchronous
and subharmonic branches are observed. Three local minima of the synchronous
branch and their dependence on modulation frequency are also shown in figure 4.
The corresponding αc, displayed in the inset, show that these minima are associated
with relatively large wavenumber differences, where cell sizes can differ by factors
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of two to three. This is also confirmed upon examining the location of the humps
in figure 1. For convenience, these locations and the critical values corresponding to
the two double minima (intersection points) observed in figure 4 are given in table 2.
Physically, the double minima suggest the possible occurrence of mode switching
where the cellular (or roll) pattern alternates between two cell (or roll) sizes dictated
by the two different wavenumbers. Such a process would be easily observed given the
large difference in the two wavenumbers associated with each of the double minima
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Pr g1Ra Ω Mac αc

0.01 5000 3.4 125.77 2.68
7.10 5000 88.0 123.67 1.54

10.00 5000 116.0 115.20 1.60
100.00∗ 5000 1000.0∗ 85.09∗ 1.92∗

∗ Maximum stabilization occurs beyond Ω = 1000.

Table 1. Values of Ω, Mac, and αc for maximum stabilization

Ω Mac αc1 αc2

9.00 124.0 1.7 3.1
25.24 185.7 1.2 3.5

Table 2. Location and critical values for double minima

in table 2. Figure 4 also reveals that the subharmonic branch forms at Ω slightly less
than 17.5 and disappears just beyond Ω of 52. The subharmonic instability extends
to Ma values less than −250, where a stable temperature gradient occurs for the
unmodulated problem.

3.2. Modulated Marangoni–Bénard instabilities in (1/Ω, g1Ra)-space

For the unmodulated system, the neutral stability behaviour of the Marangoni–
Bénard and Rayleigh–Bénard problem is qualitatively similar when comparing results
in (α,Ma)-space to those in (α, Ra)-space. For the modulated problem, correspondence
of stability behaviour between (α,Ma)-space and (α, Ra)-space is complicated by
the fact that changing Ra simultaneously affects both the steady instability agent
(buoyancy) and the modulation amplitude which is also part of the buoyancy term.
In contrast, varying Ma only affects a steady instability agent, which in this case is
the variation of surface tension along the free surface. One alternative is to consider
gravity modulation effects in (1/Ω, g1Ra)-space to facilitate comparisons between the
Marangoni–Bénard and Rayleigh–Bénard problems.

It is quite impractical to characterize the stability behaviour in the full param-
eter space for the (linear but non-autonomous) problem. Identification of stability
boundaries in (1/Ω, g1Ra) provides a direct means of assessing modulation effects. In
this section, stability boundaries in (1/Ω, g1Ra)-space are used to quantify the effects
of modulation frequency and amplitude for given values of (unmodulated) system
parameters. Stability behaviour has been investigated in this manner in the pioneering
works of Gershuni & Zhukhovitskii (1963) and Gershuni et al. (1970), and the recent
detailed treatments of solutal and double-diffusive instabilities by Saunders et al.
(1992), Murray et al. (1991) and Terrones & Chen (1993). In figures 5 to 7 and 10 to
12, sets of neutral stability maps in (1/Ω, g1Ra)-space are shown that correspond to
different values of Pr, Ma, Ra, and g0. We note that the problem depends on g0Ra
and g1Ra rather than g0, g1, and Ra, separately.

A sequence of stability boundaries in (1/Ω, g1Ra)-space is shown in figures 5(a) to
5(l) for Pr = 1. The value of Ma increases for each snapshot (graph) in the figure 5
set, proceeding from (a) to (l). The wavenumber, α0, is set to 2, approximately the
critical wavenumber for the unmodulated Marangoni–Bénard problem. This choice
of wavenumber is consistent with those chosen for the modulated Rayleigh–Bénard
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Figure 5. Sequence of stability boundaries in (1/Ω, g1Ra) space for varying Ma. Pr = 1, Bi = 0,
α = 2, g0 = 0, Ma0 = 79.607: hatched, subharmonic response; cross-hatched, synchronous response.

studies (Gershuni et al. 1970; Murray et al. 1991; Saunders et al. 1992). Since only
a single α is considered, minima from such parameter space represent approximate
critical values at best. As figures 3 and 4 indicate that critical wavenumbers for the
modulated problem occur over a broader range of α, other values of α also merit
exploration.

In figure 5(a), the steady acceleration level is g0 = 0, corresponding to a zero gravity
condition, and Ma = 0 as well. Therefore both steady instability agents, buoyancy
and surface tension variation, are zero. Alternating tongues of subharmonic and
synchronous instability are observed in figure 5(a) for sufficiently large modulation
amplitudes, g1Ra. As modulation amplitude increases and modulation frequency
decreases, the stable regions separating the subharmonic and synchronous instability
tongues become quite thin. The minimum amplitude required to incite instability is
g1Ra = 4.426× 103 and occurs for a modulation frequency of Ω = 24.5. Above this
minimum amplitude a subharmonic instability develops. The results of figure 5(a) also
bear a striking resemblance to the Rayleigh–Bénard results presented in Gershuni &
Zhukhovitskii (1976) and Saunders et al. (1992) for g0 = 0. This is not surprising since
the principal difference with Ma = 0 is then the application of Rayleigh’s boundary
conditions in previous studies as compared to the conditions given in § 1 for the
present study. In fact, the stability boundaries for rectangular modulation, presented
in the earlier works of Gershuni & Zhukhovitskii (1963) are also quite similar in
appearance to those of figure 5(a) and aforementioned references where sinusoidal
modulation is applied.

A region of instability develops for small modulation amplitudes when Ma exceeds
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Ma/Ma0 g1Ramin × 10−3 Ω

0.0 4.426 24.5
1.1 4.609 20.0
1.2 4.679 19.9
1.3 4.764 19.8
1.4 4.864 19.8
1.5 4.977 19.9
1.6 5.107 20.1
2.0 5.727 21.4

Table 3. Minimum amplitude (g1Ra) and forcing frequency of first subharmonic tongue

Ma0 where Ma0 = 79.607. For example, when Ma = 1.01Ma0, a very thin region of
instability is observed at the bottom of figure 5(b). Gershuni et al. (1970) referred to
the lowermost region of instability as the fundamental instability region and showed
that it existed for Ra values exceeding the unmodulated neutral Ra value. (The
situation equally applies to the Marangoni–Bénard problem where Ma values replace
Ra values.) Increasing the modulation amplitude, g1Ra, suppresses the fundamental
instability. As the modulation amplitude is further increased, regions of alternating
subharmonic and synchronous instability are eventually reached. The modulation
amplitude necessary to suppress the fundamental instability increases for larger values
of Ma as observed in figures 5(b–g).

There are some characteristics of the alternating subharmonic/synchronous
tongues† which appear to be unique to the modulated Marangoni–Bénard prob-
lem, not the Rayleigh–Bénard problem (see also § 3.3). Comparison of the snapshots
(a–h) reveals that the synchronous fingers grow with increasing Ma. For a suf-
ficiently large Ma value, the synchronous tongues extend to lower g1Ra than the
subharmonic tongues. The lowest modulation amplitude to incite instability occurs
in the first subharmonic finger when Ma 6 1.2Ma0, while the second tongue (syn-
chronous) holds the minimum amplitude threshold for Ma values in the interval
1.3Ma0 6Ma 6 1.47Ma0. Upon further increasing Ma, the region of fundamental
instability and the synchronous instability tongues merge and surround the subhar-
monic tongues. The value of Ma where the synchronous tongues and fundamental
instability region initially meet occurs for Ma in the range 1.47Ma0 6Ma 6 1.48Ma0.
Beyond 1.48Ma0, the fundamental instability region and the synchronous tongues
are indistinguishable, and the stable regions surrounding the subharmonic instability
regions continue to shrink. Careful inspection of figure 5(a–l) also reveals that the sub-
harmonic tongues recede with increasing Ma although this occurs much more slowly
than the growth of the synchronous tongues. The minimum amplitudes required to
excite a subharmonic instability in the figure 5 snapshots, and their associated Ω are
given in table 3. These amplitudes were always associated with the first subharmonic
region (that of largest modulation frequency).

The stability results shown in figure 6 are for Pr = 10. In contrast to the figure 5 re-
sults, the increased mechanical damping for Pr = 10 is responsible for the significantly
larger modulation amplitude required to achieve subharmonic instability. For exam-
ple in figure 6(a) this minimum amplitude is g1Ra ≈ 20× 103, while g1Ra ≈ 4.4× 103

for the corresponding Pr = 1 in figure 5(a). In figure 6(a) where no fundamental

† The instability tongues are also referred to as instability regions, intervals, or bands (cf.
Gershuni & Zhukhovitskii 1976 and Saunders et al. 1992).
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Figure 6. As figure 5 but for Pr = 10.

instability exists, the modulation amplitude for the synchronous instability boundary
continues to decrease with decreasing Ω. A stable tongue is observed within this un-
stable region. The synchronous instability resonance is excited at smaller modulation
amplitudes than the subharmonic instabilities tongue but these occur at low modu-
lation frequencies. The larger Pr value also results in the subharmonic/synchronous
instability regions being shifted to higher Ω. However, this shift appears largely due
to choice of scaling for Ω and is further discussed in § 4.3.

For Ma = 1.2Ma0 (figure 6b) the fundamental instability region is again present
as in the case of Pr = 1 (figure 5d). However, the fundamental instability region is
observed to be slightly thicker in figure 6(b) than for the same Ma value in the case of
Pr = 1. This is also attributed to the increase in damping due to viscous dissipation.
No distinction between the fundamental instability region and synchronous tongues of
instability is observed in the figure 6 snapshots. The separation of the two boundaries
apparently occurs at smaller Ma values than we have considered, within the range
1.1Ma0 < Ma < 1.2Ma0. This is in contrast to the Pr = 1 results where the merging
of synchronous tongues and the fundamental instability boundary did not occur until
Ma > 1.47Ma0. The stable tongue observed in figure 6(a) for Ma = 0 has moved
beyond the range of g1Ra values considered, for all other Ma values (cf. figure 6b–f).
Careful inspection of figure 6 also reveals that the subharmonic instability tongue
recedes, while the stable region surrounding the subharmonic tongue shrinks with
increasing Ma, similar to the Pr = 1 results.

The Pr = 0.01 results in figure 7 also shift the instability tongues to small Ω,
which as noted above, is also due in part to our choice of frequency or time scale.
For Ma < 1.5Ma0, the leftmost subharmonic tongue (1/Ω ≈ 0.2) reaches a smaller
modulation amplitude (g1Ra) than the other tongues to the right. However, for
Ma = 1.5Ma0 in figure 7(e), the leftmost synchronous tongue (1/Ω ≈ 0.5) contains
the minimum g1Ra value. This synchronous tongue appears to merge with the fun-
damental instability region in figure 7(f) (just beyond the 1/Ω range we examined).
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Figure 7. As figure 5 but for Pr = 0.01.

The overall behaviour of the subharmonic and synchronous tongues with increasing
Ma, in figure 7, is consistent with that described for Pr = 1 case. For the case of
very small Pr, Pr = 0.01, subharmonic and synchronous instability tongues shown
in figure 7 are at higher modulation amplitudes than for Pr = 1 results. Since Pr is
small, large damping of the system is caused through thermal diffusion. As opposed
to representing an absolute measure of damping, here, Pr is a measure of relative
damping, viscous dissipation to thermal diffusion. Stability boundaries of figure 5 to
7 in conjunction with the results for Pr values of 1 and 10 suggest that a minimum
modulation amplitude exists for some finite value of Pr, in the range 0.01 < Pr < 10,
which qualitatively agrees with Gershuni & Zhukhovitskii (1963, 1976). Using a highly
truncated, one-term Galerkin approximation, they found that minimum damping oc-
curred for Pr = 1 in their modulated Rayleigh–Bénard problem. These damping
aspects do not appear to have received further attention in subsequent spectral and
higher-order studies of modulated Rayleigh–Bénard problems and are considered
below.

The variation of the critical Marangoni number, ηMac , associated with the funda-
mental instability boundary is shown in figures 8 and 9 as a function of modulation
amplitude. The variation, ηMac , is the change in Mac with respect to the unmod-
ulated critical Ma value, Macp and is defined as (Mac −Macp)/Macp. Each of the
critical value curves shown in the figures corresponds to a different Pr value in the
range, 0.001 6 Pr 6 500. Results in figures 8 and 9 correspond to Pr/Ω2 values of
1/(25)2 and 1/(50)2, respectively. For convenience, Ra is set to 1000 and the relative
amplitude, g1 (as defined by Gershuni & Zhukhovitskii 1963) is represented on the
abscissa. Wavenumbers associated with Mac are shown in the insets of figures 8 and
9. The critical wavenumber, αc decreases with modulation amplitude for all cases
except Pr = 0.01 and Pr = 0.001. For Pr values 0.001 and 0.01, αc increases with
modulation amplitude. The departure from αcp is small for g1Ra < 1000, but quickly
grows as g1Ra increases beyond 103.

A reasonable approximation based on the results from both figures is that the
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variation of Mac, ηMac increases with square of the modulation amplitude, g1Ra.
More precisely for g1Ra < 1000, ηMac ∝ (g1Ra× 10−3)1.99, where the proportionality
constant is a function of Pr. For a given g1 value in figure 8, ηMa displays an
O(100) variation due to the Pr dependence. The greatest variation in Mac occurs for
Pr = 0.1 while the Pr = 500 results display the most insensivity to modulation due
to large viscous damping. These results further support the existence of a minimum
Pr as noted above. However, results of figures 8 and 9 suggest that the value of Pr
associated with minimum damping occurs at a Pr slightly less than 1, in the range
0.01 < Pr < 1, rather than Pr = 1 computed for the modulated Rayleigh–Bénard
problem (Gershuni & Zhukhovitskii 1963). While the existence of a minimum Pr
value is confirmed, it is unclear whether the difference in these results and Gershuni
& Zhukhovitskii’s is due to different steady driving forces (surface tension variation
vs. buoyancy) or the result of the one-term approximation applied by Gershuni &
Zhukhovitskii (1963, 1976). In general, the variation in Mac, ηMac associated with the
fundamental instability region is small for g1 < 0.1. Modulation effects are suppressed
until larger g1 values (g1 ≈ 1) for very small or very large Pr. For moderate Pr values,
Mac variations of 0.1% and larger are observed at g1 > 0.1.

While a minimum modulation amplitude, (g1Ra)c, is observed along the fundamen-
tal instability boundary, the boundary is shown to be relatively flat near (g1Ra)c in
figures 5 to 7. When ηMa is sufficiently small that the fundamental instability region
and the synchronous tongues remain separated, as in figures 5(a–e) and 7(b–e), critical
g1Ra values obtained from figures 8 and 9 approximate reasonably the fundamental
instability boundary for other modulation frequencies, Ω < Ωc, for the ranges of Ω
investigated in this paper.
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3.3. Modulated Rayleigh–Bénard results

The modulated Rayleigh–Bénard problem is briefly considered, to examine some
factors that might contribute to the differences (with respect to the modulated
Marangoni–Bénard problem) that were noted in § 3.2. Results that follow in fig-
ures 10 and 11 correspond to the modulated Rayleigh–Bénard problem with a rigid
conductive lower surface and a free insulated upper surface (Bi = 0). Surface tension
effects are also eliminated (Ma = 0) for both sets of results. The difference between
this problem and that considered by Gershuni & Zhukhovitskii (1963) is the differing
boundary conditions. Gershuni & Zhukhovitskii considered the upper and lower sur-
faces as free and conductive boundaries as opposed to those in equations (3.8) and (3.9)
used for this study. The modulated double-diffusive study of Saunders et al. (1992)
also allows limited comparison with their results, specifically their stationary stability
boundaries. For the stability boundaries shown in figures 10 the steady gravity accel-
eration level, g0, is set to one, corresponding to terrestrial conditions, and the value of
Ra differs, increasing from snapshot (a) to snapshot (h). On the other hand, for results
of figure 11, Ra is fixed to Ra0 while g0 increases in each snapshot from (a) to (h).

As in the case of non-zero Ma, a fundamental instability occurs for Ra > Ra0

which is stabilized for some finite modulation amplitude. Here, α0 is again set to 2
and the corresponding Ra0 is 670.280.† Further increase in g1Ra eventually destabilizes
the layer. In general, alternating bands of synchronous and subharmonic instability
separated by thin stable regions are observed, which is characteristic of gravity mod-
ulation Rayleigh–Bénard results of Gershuni & Zhukhovitskii (1963). The stability
boundaries for Ra = 1.01Ra0 in figure 10(a) are similar to those in figure 5(a) for
Ma = 1.01Ma0. However, unlike the non-zero Ma results of figure 5, the modulated

† Analogously to the Ma case, these values are quite close to αc and Rac values, 2.096 and 669.00,
respectively.
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Figure 10. Sequence of stability boundaries in (1/Ω, g1Ra) space for varying Ra. Pr = 1, Bi = 0,
Ma = 0, α = 2, g0 = 1, Ra0 = 670.29: hatched, subharmonic response; cross-hatched, synchronous
response.

Rayleigh–Bénard results of figure 10 show that both subharmonic and synchronous
instability regions elongate and tend to lower modulation amplitudes with increasing
values of Ra. Even at the larger Ra values, the stability bands remain well defined
for the modulated Rayleigh–Bénard results. The synchronous instability regions do
not merge with the fundamental instability region as was the case for the modulated
Marangoni–Bénard results of the previous section.

Results in the form of (1/Ω, g1Ra) stability boundaries for the modulated Rayleigh–
Bénard problem are somewhat limited. However, a set of (1/Ω, g1Ra) stability bound-
aries for three different Ra values shown in Gershuni & Zhukhovitskii (1963) provide
a basis for comparison. These results are also found in more recent work, Gershuni &
Zhukhovitskii (1976). Although these specific sets of results are based on a one-term
Kantorovich (Galerkin) model, they have been shown to be in good agreement with
higher-order calculations of the equivalent problem. Figure 10 stability boundaries
show very similar behaviour to their results, with the principal difference between
the two works being the choice of boundary conditions as describe above. Similar
behaviour is observed with some of Saunders et al.’s (1992) stationary stability re-
sults. This simple alteration of the boundary conditions is not responsible for the
differences observed (merging of the fundamental instability and synchronous bound-
aries, and receding subharmonic) between the modulated Marangoni–Bénard and
Rayleigh–Bénard problem. The boundary condition differences quantitatively change
the stability boundaries, but there remains a strong qualitative resemblance between
the two results.

Varying Ra simultaneously changes both the steady instability term and the modu-
lation amplitude, which is precisely the effect examined in figure 10. On the other hand,
for the modulated Marangoni–Bénard problem, varying Ma (see figure 5) changes
only the steady instability term. One way to make a more direct comparison with the
stability boundaries of figure 5 might be to consider varying g0 values. Incrementally
changing gravity levels would probably be difficult and impractical to implement
experimentally; however from the computational standpoint, it allows isolating and
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comparing analogous effects of the steady stratifying agents, buoyancy and surface
tension variation.

Stability boundaries in (1/Ω, g1Ra) are shown in figure 11 for different g0 values.
These results are qualitatively similar to those of increasing Ra in figure 10, rather
than the results of increasing Ma in the previous section (§ 3.2). On comparison,
the fundamental instability boundary for increasing g0 in figure 11 is observed to
occur at larger amplitudes, g1Ra, than for the case of increasing Ra. This is expected
since increasing g1Ra in figure 11 destabilizes the buoyancy term of the unmodulated
system, while in figure 10 increasing Ra increases not only the steady term, but
also the modulation amplitude which was observed to have a stabilizing effect on
the system near Ra0. Merging of the fundamental instability with the alternating
synchronous bands was not observed in figures 10 and 11. Therefore, it seems likely
that the merging behaviour is primarily associated with the location of the stratifying
agency, surface tension variation, which is applied as a surface force rather than a
body force as in the case of the buoyancy problem.

4. One-term approximations
Using a one-term Galerkin approximation, the gravity-modulated Marangoni–

Bénard problem can be reduced to the Mathieu equation which in turn reduces
the number of parameters from seven to three. A direct analogy can then be made
to a well-studied mechanical system, a viscously damped pendulum that oscillates
vertically at its fulcrum. This analogy was used by Gresho & Sani (1970) to study
the modulated Rayleigh–Bénard problem, and is extended here to the combined
Marangoni–Bénard/Rayleigh–Bénard problem.

4.1. Mathieu equation development and mechanical analogies

Substituting the trial solutions, wN(x3, t) =
∑N

i=1 Ai(t)ŵ(x3) and φN(x3, t) =∑N
i=1 Bi(t)φ̂(x3), into equations (2.6) to (2.9c), leads to the following one-term result:[

b1 0
0 b2

] [
Ȧ

Ḃ

]
=

[
a11 a12

a21 a22

] [
A
B

]
(4.1)
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where

b1 = [(Dŵ,Dŵ) + α2(ŵ, ŵ)], p1 = [(D2ŵ,D2ŵ) + 2α2(Dŵ,Dŵ) + α4(ŵ, ŵ)],

b2 = (φ̂, φ̂), p2 = α2(ŵ, φ̂),
a11 = −Pr p1, p3 = α2φ(1)w(1),

a12 = Pr[g(t)Ra p2 −Map3], p4 = [(Dφ̂,Dφ̂) + α2(φ̂, φ̂)],

a21 = (ŵ, φ̂),
a22 = −p4, g(t) = g0 + g1 cosΩt.

The inner product is denoted by

(f, g) =

∫ 1

0

f(x3)g(x3)dx3.

Combining the first-order equations in (4.1) and re-scaling the dimensionless time,
t, as t = 2τ/Ω, the pair of equations can be reformulated in terms of the damped
Mathieu equation:

B̈ + 2ςḂ + (ξ + 2q cos 2τ)B = 0 (4.2)

where the overdot now represents, d/dτ. The coefficients, ς, ξ, and q can be interpreted
as effective damping, stiffness, and amplitude coefficients, respectively. The standard
form of the Mathieu equation is ÿ + (a+ 2q cos 2τ)y = 0, where the coefficients a
and q are the Mathieu coefficients (McLachlan 1964; Abramowitz & Stegun 1974).
The coefficients ς, ξ, a, and q are then defined in terms of the seven fluid transport
parameters:

ς =
1

Ω

(
Pr
p1

b1

+
p4

b2

)
, (4.3)

ξ =
4Pr

Ω2

(
p1 p4

b1 b2

− a21 p2

b1 b2

g0 Ra− a21 p3

b1 b2

Ma

)
, (4.4)

a = ς− ξ2, (4.5)

q = −2
a21 p2

b1 b2

g1 Pr Ra

Ω2
. (4.6)

Therefore, we can reduce the gravity-modulated Rayleigh–Bénard/Marangoni–
Bénard problem to (approximately) the Mathieu equation, for which tabulated and
graphical solutions such as the Strutt diagram in figure 12 exist. The influence of
the seven fluid transport parameters (Pr, Ra,Ma, α, g0, g1, Ω) on stability can then be
obtained by examining their relationship to the two Mathieu parameters and damping
ratio. Subject to equations (4.3)to (4.6), modified growth rate diagrams similar to those
constructed by Gresho & Sani (1970) remain valid for the present problem.

The velocity and temperature trial functions are employed:

ŵi(z) = (1− z)z2 +
1

π2
sin2(πz), (4.7)

φ̂(z) =
(

1− z

2

)
z + sin

(π
2
z
)
. (4.8)

With these trial functions, the one-term approximation was shown to give satisfactory
quantitative accuracy for the unmodulated doubly diffusive instability (Skarda et al.
1998). An error assessment of the one-term Galerkin approximation for the unmodu-
lated double-diffusive instability showed that predicted Mac values from the one-term
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approximation were within 10% to 20% of Mac values computed from the exact
solution, while the one-term predictions of Mac for the Marangoni–Bénard problem
and Rac for Raleigh-Benard problem are 10% lower and 6.8% higher, respectively,
than corresponding collocation (N = 10) results.

4.2. One-term results

Gresho–Sani stability maps are given in figure 13(a, b) and have been computed for a
larger range of a and q values to satisfy the range of values considered in this paper.
Each curve in the contour plots is for constant values of ζ/

√±a. The + corresponds
to the hanging pendulum while the − corresponds to the inverted pendulum. Since
large variations in a and q occur over typical ranges of the transport parameters, the
stability charts we constructed in figure 13(a, b) only cover a limited portion of this
range. Values of q for g1 Pr Ra/Ω

2 < 20 are within this range, although values of
both a and q can vary by several orders of magnitude for Pr � 1 for Ra and Ma
values near neutral stability. Table 4 shows tabulated transport parameter values and
the corresponding Mathieu parameters for selected one-term neutral stability results.
These points are shown in figure 14(a–d) in (α,Ma)-space and in the corresponding
Gresho–Sani map in figure 14(e).

Neutral stability curves generated from the one-term Galerkin approximation and
the higher-order Chebyshev collocation scheme are shown in figure 14(a–d). Results
are shown for Prandtl numbers of 0.01, 1, and 10. The one-term approximation
is shown to be in good qualitative agreement with the higher-order results. The
flattened appearance of the neutral stability curve in the region of Mac is observed
on both one-term and collocation curves in figure 14(a). The critical wavenumber,
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αc, of approximately 3 is observed for both curves in figure 14(a). The synchronous
curves of the one-term approximation are skewed to the left with respect to the
unmodulated neutral stability curve in figures 14(b) and 14(c), which is consistent
with the collocation curves. The one-term approximation predicts the occurrence of
the subharmonic closed loop in figure 14(b), albeit in poor quantitative agreement
with the higher-order collocation results. For a Prandtl number of 0.01, an error of
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Pr Ω Ma α a q µ

0.01 5 108.363 2.0 −1.928 −0.819 1.339
0.01 5 112.353 3.0 −5.656 −1.399 2.346
1.00 40 2.280 2.703 −0.577 −1.932 0.863
1.00 100 96.718 2.0 −0.074 −0.115 0.261

10.00 100 112.018 1.4 −5.760 −2.049 2.330

Table 4. Tabulated values of one-term Galerkin results

3.8% to 11% is observed for wavenumbers between 1 and 3. Errors ranging between
1% and 20% are observed in one-term approximation values of Mac in figure 14(b –d).

In contrast, one-term approximation errors between 2% and 10% were obtained
for the modulated Rayleigh–Bénard problem. At least three factors contribute to the
larger one-term approximation errors in the case of the gravity-modulated Marangoni
instability. First, trial functions are easily constructed for the Rayleigh–Bénard prob-
lem that satisfy all the boundary conditions, so that no error contributions occur
at the boundaries. For the Marangoni–Bénard problem, error is introduced at the
upper boundary where the tangential stress condition is not satisfied by the trial
functions, equations (4.7) and (4.8). Second, the boundary conditions in the previous
gravity-modulated Rayleigh–Bénard studies (Gresho & Sani 1970; Gershuni et al.
1970; Saunders et al. 1992; Terrones & Chen 1993) were symmetric, leading to dis-
turbance velocity and temperature profiles that varied in magnitude but maintained
reasonably constant profile shapes. For the Marangoni instability a boundary layer
profile develops that can vary considerably in both shape and magnitude for different
wavenumbers. Finally, results in Gresho & Sani (1970) are presented for a value of
Pr g1/Ω

2 = 7×10−5, while results in figure 14 exceed this value by two to four orders
of magnitude. Nonetheless, the accuracy and qualitative agreement of the one-term
approximation in figure 14(a–d) justify exploring the damped pendulum analogy to
better understand the stability characteristics observed for the higher-order results
discussed earlier.

Computing the inner products with the trial functions in equations (4.7) and (4.8),
leads to relatively simple expressions for ς, ξ, and q:

ς =
1

Ω

(
Pr

0.02438α4 + 0.5706α2 + 6

0.02438α2 + 0.2853
+ α2 + 2.471

)
, (4.9)

ξ =

(
4Pr

Ω2

)
α6 + 25.87α4 + (303.9− 8.035Ma− 0.8042 g0Ra)α

2 + 608.1

α2 + 11.70
, (4.10)

q =

(−2 g1 Pr Ra

Ω2

)(
0.01961α2

0.02438α2 + 0.2853

)
. (4.11)

As discussed in § 3.2, an α value of 2 is reasonable for the modulated problem
herein. On substituting α = 2 into the above expressions for ς, ξ, and q, equation (4.2)
becomes

0 = B̈ +
2

Ω
(22.65Pr + 6.471)Ḃ

+
4Pr

Ω2
(146.6− 2.047Ma− 0.2049 g0 Ra− 0.2049 g1 Ra cos 2τ)B. (4.12)
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Examination of equations (4.3), (4.9), and (4.12) reveals that the Prandtl number is the
only fluid transport parameter affecting damping. Furthermore, since Pr is always pos-
itive, the damping is therefore always positive. By setting the modulation amplitude, q,
to zero in equation (4.2), equation (4.12) reduces to an autonomous equation, and upon
rearranging yields the form of Nield’s approximate result, Mac/Ma1 + Rac/Ra1 = 1,
for the combined Rayleigh–Bénard/Marangoni–Bénard problem. Here, Ma1 = 71.62
and Ra1 = 715.5.

Damping reduces the growth rate of the undamped system as observed from
the transformation required to obtain equation (4.5). The Marangoni and Rayleigh
numbers are both found in the stiffness coefficient, ξ , and reinforce each other. The
stabilizing (destabilizing) effect at larger modulation frequencies with increasing Pr,
can be explained by the effect of the damping parameter reducing a for larger damping
in equation (4.5). According to the one-term approximation, equation (4.12), by setting
g0Ra = 9.990Ma, a modulated Rayleigh–Bénard problem can be obtained that is
equivalent to the modulated Marangoni–Bénard problem for the same modulation
amplitude. This could occur by changing g0 although this is physically awkward,
while varying Ra would require adjusting g1 to maintain the same amplitude value.
Not enforcing these conditions demonstrates the otherwise incompatibility of the
modulated Rayleigh–Bénard and Marangoni–Bénard problems noted in § 3.2.

4.3. Method of averaging

Although the one-term approximation is an immense simplification of the original
problem posed by equations (2.6) to (2.9c), approximate methods are still required to
investigate the Mathieu equation and its stability behaviour. The method of averaging
is well suited for these purposes since the averaging process results in an autonomous
set of equations. Bogoliubov & Mitropolsky (1961) provide a detailed account of the
method of averaging as applied to several classical problems including the damped
Mathieu equation, which is similarly presented in more recent texts (Minorsky 1962;
Meirovitch 1988). Following Bogoliubov & Mitropolsky, simple stability criteria for
the modulated problem can be obtained which are valid for small parameter values
(damping and amplitude coefficients).

The form of equation (4.2) differs only slightly from the Mathieu problem solved
by Bogoliubov & Mitropolsky, and an identical averaging procedure is applied. The
resulting set of averaged equations is autonomous and to O(ε) leads to a concise
stability criterion, (−ξ) 6 q2/2, where −1 < ξ < 0. Therefore to stabilize the slightly
unstable system, the square of the amplitude coefficient, q, in equation (4.2) must be
at least twice the stiffness coefficient, ξ. In terms of the fluid transport parameters, this
yields the following stabilization criterion for the modulated Marangoni/Rayleigh–
Bénard problem:(

Ma
a21p3

b1b2

+ g0Ra
a21p2

b1b2

+
p1p4

b1b4

)
6
Pr

Ω2

(
a21p3

b1b2

g1Ra

)2

(4.13)

where the coefficients aij and bi are defined in equation (4.1). This result also applies
for the modulated Rayleigh–Bénard problem studied by Gresho & Sani (1970), where
no-slip was required at both upper and lower surfaces of the fluid layer. The usual
requirement for equation (4.13) to apply in this case is that the trial functions satisfy
the boundary conditions, and the Ma term in equation (4.13) is neglected (Ma = 0).†
† At the very least the trial functions must not over-constrain the problem as would occur if we

applied Gresho & Sani trial functions here.
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Since the system must be lightly damped with small modulation amplitude for
equation (4.13) to be valid, α is set to 2, approximately αc for the unmodulated
system. After introducing the trial functions, equations (4.7) and (4.8), the stabilization
criterion reduces to

0 6 (2.047Ma+ 0.2049g0Ra− 146.6) 6
Pr

2Ω2
(0.2046g1Ra)

2. (4.14)

Equation (4.14) clearly shows that modulation has a stabilizing effect on the desta-
bilized Bénard system when the conditions of light damping and small modulation
amplitude hold. These conditions are easily achievable for sufficiently large Ω. There-
fore, equations (4.14) and (4.13) are well suited to determine Ω values below which
modulation occurs or is no longer negligibly small. In certain applications such as
reduced gravity fluid experiments this type of stabilization criterion can help to iden-
tify g-jitter magnitudes and frequencies that might adversely affect a proposed space
flight experiment as well as establish g-tolerability requirements for such experiments
(Skarda 1998b). For calculation purposes we note that the damping coefficient, ς, does
not enter into the stability criterion at O(ε); however it does provide a relationship
between Pr and Ω for fixed (and small) values of ς through equation (4.9).

Results from equation (4.14) are plotted in figure 15. Neutral stability curves
corresponding to Pr values of 0.01, 1, and 10 are shown in figures 15(a), 15(b), and
15(c), respectively. Stability curves from the averaged one-term approximation, and
the higher-order spectral method are shown in each plot. Equation (4.14) results
are in good agreement with those from the one-term approximation; however both
sets of results lie below the spectral results. Although an error between 10% and
12% is observed for both one-term and averaged results, they show good qualitative
agreement with the spectral results. Applying a constant correction factor of 11%
brings the one-term and averaged results into good quantitative agreement with the
higher-order results as observed in figure 15(d–f). The corrected results are within
2% of the higher-order results for marginally stable Ma values less than 90 (13%
larger than the unmodulated Ma value, 79.608). The averaged results are within
O(ε) of the one-term ones, and when corrected also within O(ε) of the higher-order
results, for Ma values 13% larger than the unmodulated neutral stability value. For
the given parameter ranges, ε remained small, ε < 0.05. While not exceeding one, the
damping coefficient, ς exceeds ε by O(10) at Pr/Ω2 ≈ 4× 10−5 (MaNS ≈ 90). The
error of the averaged results remains tolerable, but the accuracy rapidly deteriorates
for Pr/Ω2 > 4× 10−5. Highly truncated Galerkin models have been applied to a
variety of problems (Finlayson 1972; Gershuni & Zhukhovitskii 1976), with several
useful examples of the corrected Galerkin models contained in Finlayson.

As equations (4.13) and (4.14) suggest, the abscissa in figure 15(a–c) is rescaled to
Pr/Ω2 for figure 15(d–f). The averaged curves in figure 15(d–f) are clearly equivalent
in this parameter space. The corrected averaged results and their close correspondence
with the one-term and spectral results confirms that MaNS increases with modulation
and the increase is proportional to Pr/Ω2 in the limit of small modulation amplitude
and damping. Careful inspection of figures 15(d–f) reveals that the one-term and
spectral curves are very close but not identical for the three different Pr values.
Although not entirely, a significant portion of the resonant frequency shift attributed
to the relative strength of thermal and viscous damping can be accounted for through
this rescaling. In terms of dimensional parameters, Pr/Ω2 = νD/Ω∗2. Therefore, for
small levels of modulation, the appropriate time scale is related to the geometric
mean of the kinematic viscosity and thermal diffusivity as tc = d2/

√
νD. This is
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Figure 15. Comparison of averaged results with one-term and spectral results at marginal stable
Ma values. Unmodulated correction factor applied to both averaged and one-term results in (d), (e)
and (f). α = 2. —–, higher-order spectral; �, one-term Galerkin; •, method of averaging.

precisely the time scale used in the studies of Gershuni and Zhukhovitskii (Gershuni
& Zhukhovitskii 1963; Gershuni et al. 1970; Gershuni & Zhukhovitskii 1976). The
thermal diffusion time scale, d2/D, which was used in this study, is often applied to
Bénard-type studies (Gresho & Sani 1970; Terrones & Chen 1993; Kelly & Or 1998;
Or et al. 1999), while the viscous time scale, tc = d2/ν , has also been used (Saunders
et al. 1992). However, an advantage of the time scale d2/

√
νD is that the resonant

frequency shift due to varying Pr is reduced. As the averaged results indicate, by
defining a dimensionless modulation frequency, Ω̃, where Ω̃ = Ω∗d2/

√
νD, the effects

of Pr are negligible for small modulation (sufficiently large frequency).

5. Application and limitations of the analysis
To examine the usefulness and limitations of this work to physical systems it is

helpful to put the results of the previous sections in the context of dimensional
parameters. Here we briefly consider fluid layers of mercury and silicone oil with
Pr values of 0.0125 and 105, respectively. These fluids are well characterized and
have been used in previous reduced-gravity investigations. Using results of § 3.2, the
Mac variation (with respect to the unmodulated problem), ηMac , values are computed.
For a 1 cm depth of mercury, (g1, ω) values of (0.05, 0.03 Hz) result in an ηMac of
10−4, while (g1, ω) values of (0.8, 0.11 Hz) lead to an ηMac of 10−2. For 1 cm depth of
10 cSt silicone oil, and (g1, ω) of (0.6, 0.16 Hz), ηMac = 2× 10−3. For (0.075, 0.04 Hz),
η = 2× 10−5. At 5 cm and g1 ≈ 10−2, ηMac is 0.003 and 4 × 10−4, respectively, for
mercury and silicone oil; however the period is of the order of 3 minutes in both
cases.

Surface deformation, which becomes important for small g0 and d, can be charac-
terized by the Bond number, Bo and Crispation number, Cr, where Bo = ρg0d

2/σ and
Cr = µD/σd. As Bo decreases and Cr increases, a long-wavelength instability eventu-
ally occurs for the unmodulated system, thus clearly placing a restriction on the flat
interface results. The boundary between the long-wave and finite-wave instability can
be calculated from the expression Cr = 8.93×10−3Bo1.01 for the range 10−7 < Bo < 1
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(Skarda & McCaughan 1999). For Cr > 8.93 × 10−3Bo1.01 a long-wave instability
occurs while a finite-wave instability occurs otherwise. Using this criterion, we can
estimate g0 levels where curvature effects are important, i.e. whether the instability
is a long or finite wave mode. For unmodulated silicone oil and mercury layers, if
g0 = 2× 10−4 for the 1 cm thick layer of silicone oil, Bo and Cr are 9.3 × 10−4 and
4.44 × 10−6, respectively, which results in a finite-wave (Pearson mode) instability.
Conversely if g0 = 10−4 (Bo = 4.8 × 10−3), the long-wave instability occurs. For the
1 cm deep mercury layer, Cr = 1.5× 10−6, therefore, when g0 = 10−5 (Bo = 3.1×10−5)
a finite-wave instability occurs. Using the above correlation for the long/finite-wave
boundary, a finite instability is found to exist for g0 > 6.3× 10−6, and the long-wave
instability occurs when the inequality is reversed.

As this investigation treats a critical limit, that of a flat (zero curvature) interface,
it also raises important questions concerning the effects of curvature and the role of
surface deflection. Consequently, these questions need to be answered by extending
this work to include curvature effects. The resulting problem can be viewed as
a combination of the Faraday instability (Benjamin & Ursell 1954) and the flat-
interface modulated Bénard problem. Analogously to our examination of thermal and
mechanical damping effects on the modulated Marangoni–Bénard problem, parallel
investigations of the viscous Faraday instability have been presented in the literature
(Kumar 1996; Cerda & Tirapegui 1998). The problem has also been studied in the
broader context of a thin film flowing over a vibrated inclined plane by Woods &
Lin (1995). The nature of modulated stability boundaries in the presence of long-
wavelength instabilities is expected to differ from the flat-interface results. Strong
evidence of this is given by the works of Or & Kelly who have examined the effects
of shear modulation on both finite- and long-wavelength instabilities (Or & Kelly
1995; Or et al. 1999). For example, they show that the stabilizing or destabilizing
effect of shear modulation depends on the preferred mode (finite or zero-wave
mode) in addition to other parameters such as modulation frequency. Similarly
identifying the parameter ranges where surface deflection effects are non-negligible
for the modulated Marangoni–Bénard problem, will also establish the range of validity
for the flat-interface approximation which was applied in this study. It would also be
interesting to determine how abruptly or gradually changes occur as the finite/long-
wavelength boundary is crossed. It should be noted that the zero curvature limit
is typically difficult to achieve computationally, when surface deflection effects are
included. Therefore the present results serve as a rigorous basis for comparison and
evaluation purposes when such models approach the flat-interface limit. Alternatively,
the problem can be posed from the limit of the Faraday instability, and its sensitivity
to a temperature or concentration gradient examined.

6. Conclusions
Floquet theory was applied to investigate the onset of convection due to surface

tension, in the presence of gravity modulation. The modulation was aligned parallel
to the temperature gradient, i.e. perpendicular to the free surface. The simplest case
of thermocapillary flows, the Marangoni–Bénard problem, was chosen to facilitate
direct comparisons with the previously studied gravity-modulated Rayleigh–Bénard
problem. This work also provides a basis for the eventual consideration of other im-
portant instability mechanisms and effects commonly associated with thermocapillary
and free surface problems, e.g. surface deformation. Stability boundaries character-
izing the behaviour for a wide range of fluids were computed numerically using a
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Chebyshev spectral collocation approach. A comprehensive study was performed by
constructing the stability boundaries for several values of relevant parameters, such
as, Pr, Ma, and g0. One-term Galerkin and averaging methods were also used to ex-
amine an even larger range of parameter values and to develop approximate stability
criteria for the modulated problem.

The stability behaviour of the Marangoni–Bénard problem is more complex in the
presence of modulation. Modulation had a stabilizing effect on neutral stability curves
in (α,Ma)-space at large modulation frequencies and approached the unmodulated
neutral stability curve as Ω →∞. As is typical of the modulated Rayleigh–Bénard
problem, both synchronous and subharmonic regions of instability were observed
for certain values of modulation frequency. For Pr = 1, the synchronous branch
became distorted with local minima and narrow tongues forming at certain values of
Ω. Sometimes both local minima were above the unmodulated Mac, thus resulting
in a stabilizing effect. At other times one local minimum extended below the un-
modulated Mac. Maximum stabilization occurred at some finite value of modulation
frequency.

In (1/Ω, g1)-space, the gravity-modulated Marangoni–Bénard problem exhibits a
fundamental instability, when Ma exceeds its corresponding unmodulated neutral
stability value. This is also consistent with the Rayleigh–Bénard instability behaviour.
At larger amplitudes, the resonant instability regions or tongues are attained. A
fundamental difference between the stability boundaries occurs when comparing the
modulated Marangoni–Bénard and Rayleigh–Bénard problems. Well-defined alternat-
ing regions of harmonic and subharmonic instability are observed in (1/Ω, g1)-space,
for the modulated Rayleigh–Bénard studies. However in the case of the Marangoni–
Bénard problem, the fundamental instability boundary and the synchronous tongues
merged for sufficiently large Ma values. Our modulated Rayleigh–Bénard results are
similar in behaviour to previous results (Gershuni & Zhukhovitskii 1963; Saunders
et al. 1992) which apply alternative sets of boundary conditions. While there are
differences in disturbance boundary conditions that were applied, even among the
cited literature, the qualitative nature of the results remains unchanged and consistent
for all studies. Increasing Ra or g0 did not change the fact that discrete boundaries
between the fundamental instability region, subharmonic instability regions, and syn-
chronous instability regions always existed and were visible for all Ra or g0 values of
the stability boundaries. The sequence of stability boundaries presented in § 3 track
the evolution of the subharmonic, synchronous, and fundamental instability regions
for increasing values of relevant parameters. This, in turn, provides insight into rather
complex changes in the stability behaviour that is not so easily quantified nor readily
understood in the absence of such systematic sets of stability maps.

A one-term Galerkin approximation for the combined Marangoni/Rayleigh–Bénard
problem was developed that leads to the modulated-pendulum analogy similar to that
derived for the Rayleigh–Bénard problem by Gresho & Sani (1970). Although ad-
ditional coefficients appear in the formulation and different trial functions must be
applied, Gresho–Sani growth rate maps were constructed and directly applied to the
combined Ma–Ra modulated system. Results from the one-term Galerkin approx-
imation qualitatively reflect the behaviour of the higher-order collocation scheme.
Recasting the highly truncated (one-term) formulation into the Mathieu problem
provides insight through analogy with the modulated pendulum. In so doing, the
effects of the seven transport parameters (Pr, Ra,Ma, α, g0, g1, Ω) on the modulated
fluid layer could be examined in terms of the three Mathieu parameters a, q, and
µ. After computing the Mathieu parameters using trial functions appropriate to the
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Marangoni problem, the stability can be assessed using available Mathieu stability
charts such as the Gresho–Sani stability maps (Gresho & Sani 1970).

The method of averaging was used to construct a relationship to quantify modula-
tion effects on the fundamental instability in the large-frequency limit. The first-order
result, (2.047Ma+0.2049g0Ra−146.6) 6 Pr/(2Ω2)(0.2046g1Ra)

2, provides good agree-
ment with the higher-order calculations. After applying a constant correction factor
(following Finlayson 1972) for the one-term unmodulated solution, agreement was
within 2% for the range Pr/Ω2 < 10−5. Therefore, to first-order approximation,
modulated neutral stability results collapses to a single curve for different Pr. Also
consistent with the Rayleigh–Bénard problem, the time scale originally applied by
Gershuni and others (Gershuni et al. 1970; Gershuni & Zhukhovitskii 1976), d2/

√
νD,

may be better suited than either diffusive or viscous time scales when characterizing
resonance behaviour over a broad range of Pr (multiple fluids).

This work was supported by NASA’s Microgravity Sciences Division and Atmo-
spheric Sciences Directorate. Computations were also performed at the Institute for
Computer Applications in Science and Engineering (ICASE) during the author’s
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